Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy.

نویسندگان

  • T J Römer
  • J F Brennan
  • M Fitzmaurice
  • M L Feldstein
  • G Deinum
  • J L Myles
  • J R Kramer
  • R S Lees
  • M S Feld
چکیده

BACKGROUND Lesion composition, rather than size or volume, determines whether an atherosclerotic plaque will progress, regress, or rupture, but current techniques cannot provide precise quantitative information about lesion composition. We have developed a technique to assess the pathological state of human coronary artery samples by quantifying their chemical composition with near-infrared Raman spectroscopy. METHODS AND RESULTS Coronary artery samples (n=165) obtained from explanted recipient hearts were illuminated with 830-nm infrared light. Raman spectra were collected from the tissue and processed to quantify the relative weights of cholesterol, cholesterol esters, triglycerides and phospholipids, and calcium salts in the examined artery location. The artery locations were then classified by a pathologist and grouped as either nonatherosclerotic tissue, noncalcified plaque, or calcified plaque. Nonatherosclerotic tissue, which included normal artery and intimal fibroplasia, contained an average of approximately 4+/-3% cholesterol, whereas noncalcified plaques had approximately 26+/-10% and calcified plaques approximately 19+/-10% cholesterol in the noncalcified regions. The average relative weight of calcium salts was 1+/-2% in noncalcified plaques and 41+/-21% in calcified plaques. To make this quantitative chemical information clinically useful, we developed a diagnostic algorithm, based on a first set of 97 samples, that demonstrated a strong correlation of the relative weights of cholesterol and calcium salts with histological diagnoses of the same locations. This algorithm was then prospectively tested on a second set of 68 samples. The algorithm correctly classified 64 of these new samples, thus demonstrating the accuracy and robustness of the method. CONCLUSIONS The pathological state of a given human coronary artery may be assessed by quantifying its chemical composition, which can be done rapidly with Raman spectroscopic techniques. When Raman spectra are obtained clinically via optical fibers, Raman spectroscopy may be useful in monitoring the progression and regression of atherosclerosis, predicting plaque rupture, and selecting proper therapeutic intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingerprint and high-wavenumber Raman spectroscopy in a human-swine coronary xenograft in vivo.

Intracoronary Raman spectroscopy could open new avenues for the study and management of coronary artery disease due to its potential to measure the chemical and molecular composition of coronary atherosclerotic lesions. We have fabricated and tested a 1.5-mm-diameter (4.5 Fr) Raman catheter capable of collecting Raman spectra in both the fingerprint (400-1800 cm(-1)) and high-wavenumber (2400-3...

متن کامل

Detection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy

Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...

متن کامل

Near-infrared Raman Spectroscopy for in Vitro Human Coronary Artery Tissue Identification

We present the results of using Near-Infrared Raman Spectroscopy (NIRS) for identification of atherosclerosis in human coronary arteries in vitro. A Raman spectrometer set to 830 nm excitation and multichannel nitrogen-cooled CCD detector was built. A total of 111 arterial fragments were spectroscopically scanned and Raman spectra were compared with histopathological findings. Non-pathologic no...

متن کامل

Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy.

Accumulation of the lipid-protein complex ceroid is a characteristic of atherosclerotic plaque. The mechanism of ceroid formation has been extensively studied, because the complex is postulated to contribute to plaque irreversibility. Despite intensive research, ceroid deposits are defined through their fluorescence and histochemical staining properties, while their composition remains unknown....

متن کامل

Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries.

Coronary intravascular ultrasound (IVUS) can assess arterial wall architecture and localize large intravascular deposits, but it does not provide quantitative chemical information, which is essential in the evaluation of atherosclerotic lesions. Previously, it has been shown that Raman spectroscopy can be used to accurately quantify the relative weights of cholesterol, calcium salts, triglyceri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 97 9  شماره 

صفحات  -

تاریخ انتشار 1998